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Abstract

Folds with different values of viscosity contrast and anisotropy have been simulated using the finite-difference code FLAC™. The kinemat-
ical analysis of these folds has enabled conclusions to be reached about strain accommodation mechanisms. The sequence of strain patterns in all
the folds analysed only differs in the intensities of the different mechanisms involved, which depend on the mechanical properties of the folds.
The order of the different strain patterns in the sequence is the same, regardless of the anisotropy and viscosity contrast. Strain accommodation in
folds follows the patterns of tangential longitudinal strain, flexural flow and layer shortening. Nevertheless, no combination of these strain
patterns can explain the shape of the folded layer at the inflection point and the high strain intensity values in the inner arc. These problems
can only be solved by considering a variant of longitudinal tangential strain that is less intense than has classically been thought and combined
with a heterogeneous distribution of flexural flow and layer shortening across the layer. The dependence of the different folding mechanisms on
the mechanical properties has been used to devise a graphical method for estimating viscosity contrast and anisotropy from the intensities of the

strain patterns in the sequence.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Folds are manifestations of the heterogeneous deformation
of layered rocks. In principle, there are many ways to accom-
modate and distribute the strain within the folded layers, and
each can be achieved by following many different paths
(Ramsay, 1967, pp. 343—344). However, experimental and field
evidence shows that these patterns and evolutionary paths do
not all have the same probability of occurring; and that folds
are mainly the result of a combination of a limited number of
folding mechanisms or strain patterns. Kinematical analysis
of folds involves the study of these folding mechanisms, their
characteristics and their evolution throughout the folding
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process. This represents one of the most important aims in
Structural Geology, since kinematical knowledge helps in the
construction of balanced cross sections, which have practical
applications and are important in understanding geological
history.

Kuenen and de Sitter (1938); Billings (1954, pp. 88—92),
Ramberg (1961); Carey (1962); Donath (1962); Ramsay
(1962); de Sitter (1964); Donath and Parker (1964) and
Mukhopadhyay (1965), among others, were pioneers in re-
search into folding mechanisms. Later, Ramsay (1967,
pp- 391—436) tackled the analysis of the geometric relation-
ships that govern the displacements of particles within a layer
when it is folded by the mechanisms of tangential longitudinal
strain, flexural flow and homogeneous deformation. Ramsay
and Huber (1987, pp. 445—473) studied the strain magnitude
and the orientation of the finite strain ellipse associated with
flexural flow and with a combination of flexural flow and
homogeneous deformation. They introduced the term “‘inverse
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tangential longitudinal strain’ to refer to a strain pattern that is
complementary to tangential longitudinal strain and related to
the folding of incompetent material. Twiss and Moores (1992)
showed examples of strain distribution in layers where the
deformation was accommodated by tangential longitudinal
strain, flexural flow and initial homogeneous deformation, in
folds developed by bending and buckling. Bobillo-Ares et al.
(2000) studied the shape of the folded layer and the strain dis-
tribution associated with tangential longitudinal strain, and
analysed the problems that this mechanism presents. Bastida
et al. (2003) and Bobillo-Ares et al. (2004) developed a mathe-
matical model of tangential longitudinal strain, flexural flow
and irrotational deformation by incorporating this theory in
a computer program. Ormand and Hudleston (2003) studied
the folding kinematics of natural folds in the Appalachian
Valley-and-Ridge province. Aspects such as decrease in area
and the migration of the neutral line, which affect the way
in which the folded layers accommodate deformation, have
been treated by Gairola (1978); Hudleston and Holst (1984);
Hudleston et al. (1988); Ramsay and Huber (1987, pp. 460—461),
Hudleston and Lan (1993) and Lan and Hudleston (1995).

In this paper, we constructed elastoviscous models of folds
with different values of viscosity contrast and anisotropy using
the Fast Lagrangian Analysis of Continua (FLAC™) program
(Itasca Consulting Group, Inc., 1998). We then analysed the
kinematical characteristics of these models with the FoldMod-
eler program (Bobillo-Ares et al., 2004) developed in the
MATHEMATICA™ environment. The aim was to determine
the characteristics of the different folding mechanisms in the
operation, such as their relative importance during the folding
process and the order in which they operate. We also studied
possible solutions for certain geometrical problems that arose
during the analysis of the folds. Furthermore, the knowledge
of the mechanical properties (viscosity contrast and anisot-
ropy) enables the relative proportion of the different strain pat-
terns to be related to the rheological characteristics of the
layer. As a starting point, we considered the strain patterns
of tangential longitudinal strain, flexural flow and irrotational
homogeneous deformation, because these mechanisms repre-
sent, a priori, the most common forms of strain accommoda-
tion in isolated folded competent layers. We should
remember, however, that the strain patterns considered in the
folding analysis are not necessarily exclusive, and that there
could be other mechanisms that account for the geometrical
and kinematical characteristics of the folds better.

The kinematical study of these simulated folds is an essen-
tial prerequisite for subsequent kinematical analysis of natural
folds.

2. Numerical modelling

The folding of a competent layer embedded in a softer matrix
has been studied (Fig. 1a) using a numerical approach based on
the commercial explicit finite-difference code FLAC™ (Itasca
Consulting Group Inc., 1998). This code solves the discretized
equations of motion using a time-marching dynamic relaxation
scheme in which the inertial terms are used to reach the
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Fig. 1. (a) Initial geometry and boundary conditions of viscoelastic folding in
pure shear (see text and Table 1 for details). (b) Representation of the folds
(labels A to L) developed with FLAC in a diagram of anisotropy (a) vs. vis-
cosity contrast (m).

equilibrium state. The continuum medium is divided into a finite
difference grid composed of linear quadrilateral plane-strain
elements. Internally, each element is divided into two super-
posed sets of constant-strain triangles for efficient handling of
volumetric constraints. A mixed discretization scheme is used
to prevent “‘hourglassing” or ‘“mesh-locking” problems (Marti
and Cundall, 1982). The code has previously been used to inves-
tigate a wide range of deformation processes relevant to struc-
tural geology (i.e. Hobbs et al., 1990; Ord, 1990; Zhang et al.,
1996; Passchier and Druguet, 2002; Takeda and Griera, 2006).

A linear elasto-viscous (Maxwell) material model was
adopted (Turcotte and Schubert, 1982). According to this rhe-
ology, the strain rate is the superposition of a linear elastic
strain rate and a linear viscous strain rate. For a reference
frame parallel to the layer, the compliance between the devia-
toric strain rate (¢) and stress (7) can be expressed as,
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where G and u are the elastic shear modulus and the coefficient
of viscosity, respectively. The viscous response of the stiffer
layer was considered anisotropic, while elastic properties and
matrix viscosity were considered isotropic. The anisotropic ma-
terial is fully defined using two different components: normal
viscosity (uy, for i = j) and shear viscosity (us, for i # j). Nor-
mal viscosity describes the resistances of the layer to normal
stresses, and will be the viscosity of the layer if the material
is isotropic, whereas the shear coefficient represents the resis-
tance to simple shear within the layer. It is fulfilled that u; > u,.
Thus, when u; = u,, the material is isotropic, and as
decreases with respect to w;, the anisotropy of the material
increases (Johnson and Fletcher, 1994, pp. 419—424; Hudleston
et al., 1996). The viscosity contrast is defined as m = pu;/up,
(um being the viscosity of the incompetent matrix) and the an-
isotropy of the layer as @ = u, /. Therefore, the shear viscos-
ity can be expressed as u, = p,,m/a. Values of elastic and
viscous properties used are listed in Table 1, and are similar
to those used for previous numerical studies of folding
(Mancktelow, 1999). These values are in agreement with the
range established for natural rocks (Turcotte and Schubert,
1982). The range of Deborah numbers employed in the present
simulations is 10~ to 10~° and is close to that expected for vis-
cous behaviour (Poliakov et al., 1993). On the other hand, com-
pressibility of the material is considered purely elastic and the
bulk modulus (K ) is taken as 2 x 10'° Pa. The area variation at
the end of the simulations does not reach 1%.

The geometry of the model consists of a central layer of
two units of thickness, positioned in parallel to the compres-
sion axis. A constant initial sinusoidal perturbation has been
assigned for all the models with an initial amplitude of 0.1
and wavelength to layer thickness of 16. This closely corre-
sponds to the theoretical dominant wavelength/thickness ratio
for a viscosity contrast of 100 (Johnson and Fletcher, 1994,
p. 209). Considering the symmetry of the problem, only one
half wavelength of the fold has been modelled. We used a total
of 768 quadrilateral elements to define the mesh; the layer
width was represented by 8 elements and the length by 24
elements.

Progressive shortening parallel to the layer was achieved by
means of velocity boundary conditions at a constant strain rate
of 2 x 107" s™". The normal velocity component on the con-
vergent sides (left and right) was prescribed, while parallel and

Table 1
Material properties of the models developed with FLAC
Geometrical Geometry of the initial perturbation Sinusoidal
properties Wavelength to thickness 16
(Iength/thickness)
Normalized amplitude (7 = y/x) 0.0125
of the initial perturbation
Shear modulus (G) 1 x10"Pa
Elastic Bulk modulus (K) 2 x 10" Pa
properties Range of normal viscosity (w;) 1 x 10*°—1 x 10*' Pas
Viscosity Range of shear viscosity (us) 2 x 10"8—1 x 10*' Pas
properties  Matrix viscosity (i) 1 %10 Pas
Bulk strain 2x 107 s7!

rate

convergent on other sides (upper and lower) were uncon-
strained. A coherent boundary between competent layer and
matrix is assumed and slip is not allowed to occur.

Twelve folds have been developed (Fig. 1b), which differ in
the viscosity contrast between layer and matrix (m = 10, 25
and 100) and anisotropy (a = 1, 5, 10 and 50). For m # 100
or anisotropic behaviour, the initial wavelength/thickness of
the perturbation is larger than the one that develops at maxi-
mum growth rate. However, for m =10 and m =25, the
growth rate of the selected perturbation is only 0.65 and
0.85 times lower than the dominant wavelength/thickness.

In all the folds, the geometrical data, and principal values
and directions of strain in every element were obtained at
5% shortening intervals, thus providing complete knowledge
of the evolution of the folding. The models were run to bulk
shortening values of up to 40—65%. However, when g is sim-
ilar to or lower than u,, there are stability problems in the
models and it is not possible to reach those bulk shortening
values. For these models, there was a strong tendency to gen-
erate new instabilities with shorter wavelengths than the ini-
tially prescribed perturbation; these short wavelengths are
related to the smallest length defined by the finite-difference
mesh. Comparable observations were previously reported by
Miihlhaus et al. (2002) and were interpreted as an effect of
ignoring the couple stress across the layer in anisotropic
materials.

The advantage of performing kinematical analyses on
numerical folds mainly lies in the precise information avail-
able on geometrical and strain properties at every point of
the folded layer, which makes it possible to make a study of
the kinematical behaviour of the folded layers. Nevertheless,
we must be very careful when generalizing the results since
the models have been developed in accordance with specific
properties: isolated layer welded to the incompetent matrix,
with a specific initial perturbation and with certain geometric
and mechanical characteristics.

3. Kinematical analysis method

We used the FoldModeler program (Bobillo-Ares et al.,
2004) written in the MATHEMATICA™ environment to per-
form the kinematical analysis of the folds. In this program
the layer is discretized in a grid of points grouped in quadrilat-
erals, where every point is perfectly defined in a coordinate
system. The positions of the points of this initial layer are
transformed in accordance with the geometric laws of the
different mechanisms. The program is able to apply the trans-
formations arising from tangential longitudinal strain (TLS),
flexural flow (FF) and irrotational homogeneous deformation
(HD). The user decides the sequence in which the mechanisms
operate. A strain pattern sequence is built up in steps, repre-
senting operation of one mechanism. The analysis of the final
configuration enables the data relating to the final geometry of
the layer (normalized amplitude, shape of the folded surface
and layer, etc.) to be collected, and by comparing the position
of each initial quadrilateral with its deformed final shape,
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Cauchy’s tensor is obtained, from which the principal strain
values and directions are calculated at each point of the folded
layer.

Determining, using FoldModeler, the sequences of folding
mechanisms that are responsible for strain accommodation,
requires all or some of the following information about the
analysed fold (Fig. 2):

1. The initial geometry of the layer, which consists of the
thickness/length relationship of the layer, the normalized
amplitude (7 = y/x) of the initial irregularity and the mor-
phology of the guide line (GL). The GL is a line located
within the layer, initially parallel to its boundaries and rep-
resents the line to which the point transformations during
the folding process are referred. In TLS, the GL is the neu-
tral line. The GL’s morphology is determined using the
method described in Aller et al. (2004).

2. The maximum dip in the final configuration of the GL and
final relationship fy/y,, (thickness in the hinge zone di-
vided by the amplitude of the outer arc).

3. The final normalized amplitude (%) of the layer and final
shape of the GL.

4. The bulk shortening produced by the folding.

5. The relationships ¢—a (variation of A; direction with the
dip @) and R—a (variation of the relationship \/2;/%,
with «).

6. Ramsay’s classification of the folded layer to determine
variations in layer thickness (Ramsay, 1967, pp. 359—372).

To analyse the strain patterns that have operated in a fold,
we use FoldModeler to construct an initial grid that has the
same characteristics as the modelled fold. Subsequently, by
a trial-and-error process, we run the necessary number of
different sequences of strain patterns until the best fit for
the final data is obtained. Therefore, using FoldModeler to

Lmax

(a)

fit a fold involves constructing a theoretical fold with this
program that is similar, in all respects, to the fold under
analysis.

Throughout this paper we will compare the relative impor-
tance of the different strain patterns in the strain accommoda-
tion with the folding development. To quantify the intensities
of the mechanisms, for TLS and FF we considered the change
of h that the layer undergoes as a result of the operation of
these mechanisms. That is to say, for a fold that accommodates
the strain by TLS (producing a variation of 4 = (.7) at an early
stage and is later deformed by FF (producing a variation of
h = 0.1), the intensities of TLS and FF will be 0.7 and 0.1 re-
spectively. Therefore, TLS would be predominant and the final
deformation pattern in the fold will be more similar to the pure
TLS than to the pure FF. In the case of HD, we measured its
intensity as |e,|, that is to say, the absolute value of the longi-
tudinal stretch in the /A, direction.

In FoldModeler, each folding step only involves one pure
mechanism, and the sum of all of these will form the sequence
of strain patterns of the fold. This means that simultaneity can-
not be performed. Nevertheless, it is possible to simulate this
effect by considering alternating steps of small magnitude. For
instance, in the above example, simultaneity can be simulated
by running the TLS + FF sequence ten times given the follow-
ing amounts of TLS and FF for each step: Ak g = 0.07 and
Ahgg = 0.01.

4. Results of the fits

To obtain fits to the FLAC folds, we measured all the afore-
mentioned geometrical data, plotting the relationships ¢—a
and R—« in the outer and inner arc of the folded layer, and
positioning the initial GL in the middle of the layer. We per-
formed two types of fits, one in which only the final stage
of folding (type 1) was considered, and another in which the

180
160
140
120 s
100 A
< 80
60 x
40 B
20 |
10 20 30 40 50 60 70 80 90
o
3 |
25 ~A
x
L]
15 B
|
10 20 30 40 50 60 70 80 90
o
(b)

Fig. 2. (a) Definition of geometrical parameters measured in a fold. (b) Diagrams to show the relationships ¢—« and R—«. Examples of A and B points for the

fold represented in (a).
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intermediate stages were taken into account (type 2). These
two types of fits were used to check whether the results ob-
tained by only analysing the final stage (as usually occurs in
nature) are different from those obtained considering the inter-
mediate stages.

For all the modelled folds, the best-fit sequence of folding
mechanisms is always the same. The sequence only differs in
the relative intensities of the mechanisms, which will depend
on the mechanical properties of the folded layer and on the
bulk shortening undergone (Toimil, 2005). However, we
should point out that we were not able to study the influence
of late-stage flattening (very common in nature), since numer-
ical model folds could not be developed up to the stage where
this mechanism takes place. Therefore all the irrotational ho-
mogeneous deformation necessary to fit the models will al-
ways be associated with the first folding stages as initial
layer shortening (ILSH).

Because there is exact knowledge of the input parameters
for FoldModeler in the FLAC folds, the variability of the fits
that can be obtained in a fold is very small. We observed
that the folds need a specific intensity of every strain pattern,
and the different mechanisms that form the sequence have to
be combined in accordance with a very definite order (Toimil,
2005).

4.1. Results obtained with type 1 fits
We performed many different fits by varying the amount of

intensity of each strain pattern and the order of the strain pat-
terns in the sequence. The variation of the strain pattern
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intensities is very small (Fig. 3), reaching a maximum value
of Ah=0.05 for TLS and FF, and Ale,| = 0.01 for ILSH.
All the folds need to be fitted with the same sequence that con-
sists of an ILSH step followed by TLS and subsequently FF.
ILSH can operate simultaneously with TLS, and FF takes
place at the end of the folding process. If this were not so,
and TLS was applied after FF, the strain in the inner arc would
increase, producing anomalies in the shape of the layer (see
i.e. Bobillo-Ares et al., 2000, Fig. 5) and in the ¢—« and
R—a relationships, making good fits impossible. This is be-
cause TLS, in this case, would be operating on an already am-
plified fold with high curvature which would cause an increase
in the intensity of the strain by TLS.

Regarding the relationship between the mechanisms and
the mechanical properties (Fig. 3), the intensity of ILSH de-
creases as the viscosity contrast increases (something already
stated by other authors, i.e.: Ramberg, 1964; Hudleston, 1973;
Hudleston and Stephansson, 1973). Increase in anisotropy also
produces the same decrease, although its effect is less marked.
This could be because part of the deformation that should be
accommodated by ILSH, is accommodated by FF with the in-
crease in anisotropy, since the ease of layer parallel shear
increases.

The relative importance of TLS with respect to other strain
patterns increases when the viscosity contrast increases. FF
intensity also increases with viscosity contrast but to a lesser
extent than TLS. The role of FF as the dominant strain
pattern is related to materials with high anisotropies,
although this mechanism even appears, at small intensities,
in isotropic materials. In general, for folds developed in
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Fig. 3. Comparison between the results of type 1 fits with type 2 fits for all the folds analysed at the 35% shortening stage. Each diagram represents folds with the
same viscosity contrast. Folds with different anisotropy are located in the X-axis. The Y-axis represents the intensity of the different strain patterns, with the same
scale for TLS and FF (intensities measured as A/4) and for ILSH (intensity measured as Ale,|).
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competent layers with low anisotropy, TLS dominates over
FF. Therefore, an increase in anisotropy and viscosity con-
trast favours the predominance of TLS and FF over ILSH,
which leads to a larger amplitude (k) for the same amount
of bulk shortening.

4.2. Results obtained with type 2 fits

Type 2 fits are especially useful for elucidating the evolution
of the different strain patterns throughout the folding, since
they consider the intermediate stages. Because of this, in addi-
tion to the aforementioned relationships, new ones appear
(Fig. 4). During the more initial stages, the contribution
made by ILSH is similar regardless of viscosity contrast. The
intensity of this mechanism remains more or less constant dur-
ing the folding process with low viscosity contrast (m = 10),
while it tends to decrease or even disappear in folds with higher
viscosity contrasts (m = 25 and m = 100). There is a marked
decrease in ILSH in folds with m =25 for bulk shortening
values between 30% and 40%, and in layers with m = 100
marked decreases occur for 10—15% of bulk shortening.
Hudleston (1973), from experiments carried out in linear
viscous materials, and Hudleston and Stephansson (1973),
applying the finite element method to Newtonian substances,
state that ILSH almost completely disappears once the limb
of the fold reaches a dip of 10—25°. Using the results of the
FoldModeler fits we built Fig. 5, which represents the amount
of incremental strain at certain limb dips (the limb dip increases
as does the bulk shortening). We observed that there is not
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a strong decrease in ILSH in the range of dips given by these
authors, and it seems that the decrease in ILSH as the fold am-
plifies is more gradual and disappears at the highest dips. The
disappearance angle is related to the viscosity contrast between
the layer and the medium, in such a way that as the viscosity
contrast increases, the angle becomes smaller. However, there
does not seem to be any influence of the layer anisotropy.

In intermediate stages of folding evolution, TLS and FF are
the dominant mechanisms (Fig. 4). In folds developed in
anisotropic layers, as folding progresses, there is a gradual
decrease in the amount of TLS and an increase in FF, which
is probably due to the geometrical incompatibilities concern-
ing TLS. This corroborates with what we obtained with type
1 fits where to achieve good fits in a certain fold, FF had to
operate after TLS. In theoretically isotropic folds a =1, we
observed that FF is not necessary for this type of fit. Instead,
TLS intensity increases as the fold develops.

The cumulative intensities of each mechanism in type 2 fits,
that is to say, the sum of the intensities of one mechanism
throughout the previous stages until reaching a certain stage,
are very similar to those obtained with type 1 fits (Fig. 3). Nev-
ertheless, there are small differences that especially affect the
relative contributions of TLS and FF; in this way, it seems
that if we do not consider intermediate stages (type 1), more
FF and less TLS is necessary than if we take all the stages
into account (type 2). This has certain implications, for instance,
if type 1 fits are made, some FF may be necessary in isotropic
materials. However, since the sequence obtained with type 2
fits is similar to that achieved with type 1 fits, both in the order
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Fig. 4. Intensity variation of the different strain patterns (Ak for TLS and FF, and Ale,| for LSH) obtained from type 2 fits at 5%-shortening intervals.
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of the different mechanisms and in their intensities, we can state
that in folds where there is a lack of information about interme-
diate stages, the analysis of the final stage is sufficient to provide
representative kinematical information about the fold.

In type 2 fits, the variation of the strain pattern intensities
almost disappears (they are below the fourth decimal place
for Ah and Ale,|), since any sequence that fits a fold in a cer-
tain stage has to be compatible with the subsequent stages.
This fact strongly reduces the intensity variation; therefore
we have obtained only one sequence that fits each fold.
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5. Problems with the fits

Type 1 and type 2 fits give good fits of the geometrical pa-
rameters of shape, Ramsay’s classification, #y/y.,, bulk short-
ening, as well as ¢—a data in the inner and outer arc.
However, certain problems arise (Toimil, 2005):

1. There are no good fits of the R—« in the inner arc, since

FoldModeler delivers much higher strains in this zone
(Fig. 6).
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Fig. 6. Fits of the ¢—a and R—a« data in the outer and inner arc of the fold G at 40% shortening. Curves obtained from type 1 fits, type 2 fits, migration of neutral

line fits and row-by-row fits.
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2. The fit of ¢p—« and R—a« relationships worsens towards the
centre of the folded layer, that is to say, the misfit of the
data becomes larger as we move away from the layer
boundaries (Fig. 7).

3. There are differences in the morphology of the layer at the
inflection point between the shape obtained with Fold-
Modeler and the shape of the analysed fold. While the
fit with FoldModeler produces a straight morphology
(Fig. 8), that of the FLAC fold is sigmoidal. This kind
of sigmoidal morphology was achieved by Ramberg
(1961) and Hudleston et al. (1996). The mechanical reason
for this morphology is that the layer-parallel shear stress is
higher in the middle of the layer than at the edges. In any

case, there is a need to find the strain distribution that fits
the sigmoidal morphology.

The lack of fit could be because the mechanisms considered
in the FoldModeler program are not the only ones able to ac-
commodate strain in folded layers. In this regard, we tried to
solve the described problems by considering the influence of
other mechanisms or by modifying those already considered
(TLS, FF and ILSH).

5.1. Neutral line migration

We considered the effect of migration of the neutral line in
order to try to solve the problem related to the high strain in
the inner arc zone. FoldModeler does not permit the simula-
tion of a progressive migration, since the location of the neu-
tral line has to be linked to the same particles during the
folding. Therefore, to model this effect we placed the GL in
a position closer to the inner than the outer arc instead of in
the centre of the layer as we did for the type 1 and 2 fits.
We are aware that this is not a “real”” neutral line migration,
but this kind of simulation gives results similar to what is ex-
pected with progressive neutral line migration.

Although in principle this mechanism can offer a solution
to the problem of the high strain in that zone, its operation cre-
ates other problems in the outer arc, since the increase in the
distance between the neutral line and the outer boundary
causes an increase in the extensional stretching in this area
(Ramsay and Huber, 1987, fig. 21.21). Fig. 6 shows this
effect: the fit of the R—a curve in the inner arc improves
whereas in the outer arc it worsens. On the other hand, the
influence on the ¢—a curves is small. Apart from this, neutral
line migration does not solve the problems related to the wors-
ening of the ¢—a and R—« towards the centre of the fold
(Fig. 7) or to the morphology of the layer at the inflection point
zone (Fig. 8).

5.2. Heterogeneous area change

Ramsay (1967, pp. 401—402) states that the problem of the
high strain in the inner arc in folds formed by TLS can be
solved if there is a decrease in area in this zone. Hudleston

Fig. 8. (a) Fold G of FLAC at 40% shortening. (b) Fold obtained from type 1, type 2 and migration of neutral line fits. (c) Fold obtained from row by row fits.
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and Holst (1984) propose a way of strain accommodation that
also implies area change, which they refer to as ‘““inner arc col-
lapse”. Heterogeneous area changes cannot be modelled with
FoldModeler. Nevertheless, we estimated how much decrease
in area would be necessary for the R values given by FoldMod-
eler to be similar to those of the folds analysed. To do this, we
assumed that, in the inner arc, the shortening in A, direction
obtained theoretically with FoldModeler is the same as that
produced in the FLAC fold. Therefore, as we know VA, and
the R value that we want to fit, it is possible to calculate the
area variation. We performed the study for 35% of the bulk
shortening stage in the inner arc of the hinge zone in all the
folds (Table 2). The decreases in area are much larger than
1% (the value of decrease in area in the FLAC folds), except
in the folds with less viscosity contrast. Therefore, decrease in
area associated with the FLAC models does not provide the
solution to the problem. Furthermore, it does not solve the
fits in the central rows of the layer or the problem related to
the morphology of the layer at the inflection point.

5.3. Row-by-row fits

Row-by-row fits consist of fitting every row of quadrilat-
erals of the folded layer independently. In principle this leads
to an incompatibility problem (Fig. 8c), since when the differ-
ent rows are joined to build the layer, discontinuities appear in
lines that should be continuous. However, these discontinuities
are not very large. Besides, we should consider that the fits
represent approximations of the kinematical behaviour of the
folds, which means that, although they must be taken into con-
sideration, they can be assumed to carry out the analysis of the
folds to look for better fits of all geometrical parameters. The

Table 2
Percentage decrease in area necessary to fit FoldModeler R values with FLAC
R values

m=10 0—1.79 1.49—-2.42 0—1.45 -

m =25 6.89—17.16 7.97—20.55 11.71-20.06 -

m = 100 4.58—25.25 13.30—36.98 13.36—19.04 10.97—17.02
a=1 a=>5 a=10 a=>50

Inner arcs at hinge zones of folds at 35% shortening have been considered.

use of the row-by-row fits solves the three main problems de-
scribed earlier: the high value of the deformation in the inner
arc of the folded layer (Fig. 6), the lack of fit of the central
rows of the fold (Fig. 7), and the strain distribution that jus-
tifies the morphology at the inflection point zone (Fig. 8).

6. Implications of row-by-row fits

The results obtained with the row-by-row fits show a series
of characteristics that affect the traditional concept of TLS and
the distribution of the different strain patterns (ILSH and FF)
across the layer (Toimil, 2005). These characteristics appear in
all the folds, regardless of the value of the anisotropy or vis-
cosity contrast.

6.1. Initial shortening of the layer

The ILSH of the layer is not homogeneous, but there is
a small variation of shortening across the layer (Fig. 9), tend-
ing to increase in zones close to the inner arc and to decrease
near the outer arc, and remaining practically constant in the
central parts.

fold G:m=25;a=10
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Fig. 9. Intensity variation of FF and LSH across the layer, from the inner arc (IA) to the outer arc (OA). Results obtained from row-by-row fits for different folds at

40% shortening.
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TLS (row by row fits). Results obtained from different folds at 40% shortening. Y-axis represents stretching (e > 0) and shortening (e < 0). (b) Relationship (f)

between conventional TLS extension and attenuated TLS extension.

6.2. Tangential longitudinal strain

The amount of TLS that operates is lower that when the
entire layer is analysed as a whole, and represents, therefore,
an “attenuated TLS” (TLS*). In Fig. 10a, we compare the tan-
gential extension produced by TLS across the layer for type 1
fits (conventional TLS) with row-by-row fits (TLS*) in the
folds G, I, J and K for the 40% shortening stage. We observed
that the row-by-row fit provides a smoother variation across
the layer.

The deformation intensity by TLS from a flat layer is given,
approximately, by the following expression (see e.g. Ramsay,
1967, eq. 7.19):

where e represents the tangential extension, ¢ the distance to
the neutral line and r curvature radius. Taking this into ac-
count, so that eq. (2) gives the intensity produced by TLS*,
the right hand side of the equation should be multiplied by
a factor f less than one. On studying this factor, we observed
that it is not constant (Fig. 10b) and varies across the layer
showing a dependence on the viscosity contrast (m) and
anisotropy (a). Thus, eq. (2) for TLS* could be represented by:

e:f(t’,m,a) 3)

r

being f(' ,m,a) a factor that is a function of #, m and a and ful-
filling that 0 > f(#',m,a) > 7. In the closest zones to the GL, in

! . .
e=— (2) this case towards the central parts of the layer, the factor f is
r larger, which means that in these zones TLS* is more similar
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Fig. 11. Relationship between the intensities of the different strain patterns and mechanical properties: viscosity contrast (m) and anisotropy (a). Each curve in the
diagrams represents the cumulate intensity of one strain pattern. Curves are grouped according to viscosity contrast (in TLS and LSH) and anisotropy (in FF). In
every group, arrows indicate increase in anisotropy (in TLS and LSH) and increase in viscosity contrast (in FF).
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to conventional TLS. Likewise, if the viscosity contrast re-
mains constant, f increases when the anisotropy decreases
(compare fold J, a = 5, with fold K, a = 10). If the viscosity
contrast is modified, keeping the anisotropy constant, f will in-
crease as m increases (compare fold G, m = 25, with fold K,
m = 100).

6.3. Flexural flow

In the classical definition of FF (Ramsay, 1967, pp. 391—
397), the angle of the layer dip was the only variable that influ-
enced its intensity, fulfilling « = v, o being the angle of dip in
radians at every point of the fold and vy the shear strain at this
point. However, from the row-by-row fits, we observed that the
largest intensity of FF is located in the centre of the layer and
decreases towards the boundaries (Fig. 9). Besides, the FF in-
tensity increases as the anisotropy increases and to a lesser ex-
tent as the viscosity contrast increases. This mechanism even
occurs in isotropic material.

The increase in FF intensity towards the centre of the layer
can also be seen in the models that Hudleston et al. (1996) de-
veloped to analyse the importance of FF in nature. In those
models, the strain markers (lines initially perpendicular to
the layer boundaries) undergo a distortion that matches the
FF pattern, and this is more important in the centre of the
layer. Moreover, it can also be seen that as the anisotropy in-
creases the distribution of strain within the layer becomes
more similar to FF.

7. Viscosity contrast and anisotropy estimation

In geological literature, many methods to estimate the vis-
cosity contrast between the competent layer and the incompe-
tent matrix have been developed. Biot (1961) derived an
equation that enables this calculation from the ratio between
the dominant wavelength and the thickness of the layer.
Sherwin and Chapple (1968) modify Biot’s equation to include
the influence of the initial layer shortening. Hudleston (1973)
applies Sherwin and Chapple’s expression to Newtonian
viscous models, taking into account Chapple’s (1968) wave-
length selection theory and that beyond a limb dip of approx-
imately 15° there is no initial layer shortening. Shimamoto and
Hara (1976) work out viscosity contrasts in natural folds on
the basis of the work done by Hudleston (1973) and on the fi-
nite element models that they developed. Lisle et al. (1983) es-
tablish a method to estimate the viscosity contrast between
pebbles and the matrix in which they are embedded. Treagus
(1983, 1988, 1999) estimates the viscosity contrast from the
angular relationships of the cleavage refraction in two adjacent
layers. Subsequently, Schmalholz and Podladchikov (2001)
develop a method to estimate the bulk shortening and the vis-
cosity contrast in viscous and viscoelastic materials by mea-
suring two geometrical parameters in the folds: the
thickness/wavelength ratio, and the amplitude/wavelength
ratio. In this paper, we propose a new method for estimating
viscosity contrast and anisotropy of the folds taking into
account their kinematical characteristics. This method does

not intend to replace any of those described above, but repre-
sents an alternative method, and therefore, another way of
deriving some mechanical characteristics of natural folds.

7.1. Viscosity contrast estimation using fitting sequences

From the data obtained with the type 2 fits of the FLAC
folds, we plotted the cumulative intensities of each mechanism
versus bulk shortening (Fig. 11). The cumulative intensity
curves display grouping patterns that define certain fields.
Thus, in the TLS and ILSH diagram, those curves correspond-
ing to folds with the same viscosity contrast appear together,
whereas for FF they are grouped in accordance with aniso-
tropy. Therefore, in general, TLS and ILSH intensities are
essentially functions of the viscosity contrast between layer
and matrix, whereas FF mainly depends on the anisotropy.
Nevertheless, there are several tendencies within each group.
Thus, for TLS and ILSH, an increase in anisotropy is repre-
sented as a decrease in the slope of the curves, and in FF
the increase in the slope of the curves is related to the increase
in viscosity contrast.

These fields can be used to estimate the viscosity contrast
and anisotropy of a certain fold when we know the cumulative
intensities of each mechanism and the bulk shortening under-
gone, having previously obtained this information by means
of kinematical analysis using FoldModeler. Nevertheless, there
are certain limitations due to that diagram (Fig. 11) being based
on the kinematical study of specific numerical models. There-
fore, apart from the general restrictions already mentioned for
the FLAC folds, several considerations must also be made:

1. The plot has been made from type 2 fits, therefore, strictly,
it is only valid for folds for which intermediate stages of
folding have been analysed. However, we checked that
the data obtained with type 1 fits also provide a good
estimate of viscosity contrast. In the case of anisotropy,
the results are not so good, generally leading to an overes-
timation of this mechanical property. This is because FF is
used to estimate the anisotropy value, and the intensity of
FF reached with type 1 fits is larger than that achieved
with type 2 fits.

2. On the other hand, the fields of the plot do not completely
cover the diagram, because the models analysed have a re-
stricted range of values of anisotropy and viscosity con-
trast. Clearly, any fold that has m and a values over 100
and 50 respectively or a large bulk shortening, will lie out-
side these fields.

7.2. Validation of this method and natural example

To validate this method, several examples of folds pub-
lished by other authors have been analysed. We selected
some symmetrical folds developed in competent layers
(Dieterich, 1970, fig. 5a, 5b and 6a; Shimamoto and Hara,
1976, fig. 6f; Anthony and Wickham, 1978, fig. 2). The results
provide a good estimate of viscosity contrast (Fig. 12),
although the data concerning each fold generally lies outside
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the fields defined by this study. These fields must be extrapo-
lated to determine the m values. Regarding the anisotropy,
although all the analysed models are isotropic, the diagram
provides a certain value of this property. Anisotropy is overes-
timated because we carried out type 1 fits to analyse these
folds, therefore a larger value of FF is obtained which leads
to a larger anisotropy value.

From these results, it can be seen that the method could be
improved if other models, with different values of viscosity
contrast and anisotropy, were to be studied. It would also be
interesting to extend the study to other materials with different
rheological properties as well as to folds affected by flattening.
Thus, general diagrams of mechanisms can be built to estimate
viscosity contrast and anisotropy through knowledge of the se-
quence of strain patterns and the bulk shortening undergone.

We also used FoldModeler to analyse a natural fold devel-
oped in a sandstone layer from the western part of the Iberian
Massif in order to estimate its mechanical properties (Fig. 13).
This fold is located in an area of greenschist facies metamor-
phism affected by a stage of folding with associated cleavage.
We gathered all the geometrical data from this fold in order for
it to be fitted using FoldModeler: normalized amplitude, #¢/y,,
parameter, shape of the folded layer, the relationships ¢—a«
(where strain data is absent, we assume that the intersection
of the cleavage plane with the fold profile is parallel to A;)
and R—o«. The strain was calculated using Fry’s (1979)
method. We performed a large amount of type 1 fits (one of
which is shown in Fig. 13) to constrain the intensity values
of the different strain patterns, and we have seen that all the
sequences show a good fit of all the geometrical features
except for the strain in the inner arc. This problem is studied
by Toimil and Ferndndez (in press). The fitting sequences
are very similar in terms of both the order of the folding mech-
anisms and their importance. To estimate the mechanical prop-
erties we used the intensities of ILSH, TLS and FF, which
have a variation range of 0.18—0.20 (ILSH), 0.32—0.46
(TLS) and 0—0.10 (FF). The estimation of the viscosity con-
trast using TLS and ILSH gives the same value m = 25, and
the value of the anisotropy ranged between ¢ =0 and a = 5.

Considering that the anisotropy value is likely to be overesti-
mated using the results of FF obtained with type 1 fits, we
could state that in the layer analysed the anisotropy is virtually
nil. We should take into account that the intensity of the strain
patterns (especially for ILSH) will depend on the size of the
initial irregularity. In this case we considered that the layer
is almost horizontal at the beginning of the folding process
(h of the initial perturbation equals 0.001).

8. Conclusions

Numerical models of folds with different values of viscos-
ity contrast and anisotropy, developed with the FLAC finite
differences program, were analysed using the FoldModeler
program in order to determine the characteristics of the folding
mechanisms that account for strain accommodation. The
models have specific properties: isolated layer welded to the
incompetent matrix, with a fixed initial perturbation and
with certain geometric and mechanical characteristics, which
can restrict the applicability of the quantitative results.

A significant finding of this study is that the final geometry
of the fold provides enough information to decipher how the
deformation was accommodated throughout the folding. The
sequence of strain patterns is similar in all the folds analysed,
differing only in the relative intensities of each mechanism,
which is found to depend on the mechanical properties of
the folded layer and the bulk shortening. The sequence starts
with initial layer shortening (ILSH) followed by tangential
longitudinal strain (TLS) and/or flexural flow (FF). The inten-
sity of ILSH decreases as the viscosity contrast increases. An
increase in anisotropy produces the same effect, though to
a lesser degree. The stage at which ILSH ceases to be signif-
icant depends on the viscosity contrast. An increase in viscos-
ity contrast leads to cessation of ILSH at lower limb dip
angles. As the fold amplifies, the deformation tends to be ac-
commodated by TLS and/or FF. TLS is the most important
strain pattern in competent layers, although as the folding
progresses it is gradually replaced by FF due to its geometrical
incompatibilities. The relative importance of TLS with respect
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to other strain patterns increases as the viscosity contrast in-
creases. In the case of FF, the larger the anisotropy is, the
more intense this strain pattern is. FF intensity also increases
as the viscosity contrast increases, but to a lesser extent than
TLS. FF even occurs in small quantities in theoretically isotro-
pic materials, and represents the most important mechanism
when the anisotropy is very high. Therefore, in general, for
folds developed in competent layers with low anisotropies,
TLS dominates over FF.

The fit of the folds presents problems regarding strain
values in the inner arc and the geometry of the layer. These
problems can be solved by performing row-by-row fits. The
results of these fits show that ILSH is greater in the inner
arc and slightly decreases towards the outer arc, whereas FF
reaches a maximum in the central parts of the layer and de-
creases towards the boundaries. Regarding the TLS, instead
of the conventional TLS there is an ““attenuated” TLS charac-
terized by a much less intense deformation across the layer
than for conventional TLS.

The dependences of the intensities of the different mecha-
nisms on the mechanical properties of the layer were used to
construct a diagram in which viscosity contrast and anisotropy
can be estimated when we know the intensities of ILSH, TLS
and FF in the fitting sequence.
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